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Longitudinal-dispersion calculations in laminar flows by 
statistical analysis of molecular motions 
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I n  this paper the streamwise growth of a passive contaminant cloud in the laminar 
flow within a uniform conduit is investigated. A probabilistic formulation, based on 
the Lagrangian motion of typical marked fluid molecules, is used to gain insight into 
the complex dispersion problem that exists a t  times that are significantly smaller (and 
often of more practical relevance) than those required for the asymptotic case 
discussed by Taylor (1953) to  be valid. 

Previous investigations of the small-time spread of a contaminant cloud in a tube 
by Lighthill (1966) and Chatwin (1976, 1977) were primarily concerned with a cloud 
near a tube axis as may be appropriate to an injection into the flow in arteries. When 
the contaminant is more uniformly spread over the conduit cross-section it is shown 
that, even at quite small times, the conduit boundary has a very pronounced influence 
on the streamwise contaminant distribution. Such a situation occurs, for example, 
when extracting sample fluid from a flow by means of a small-diameter sampling tube. 

The streamwise spread of the contaminant cloud that results from an initial sheet 
of contaminant, spread uniformly over the conduit cross-section, is shown to depend 
critically on the Lagrangian mean-velocity history of a typical fluid molecule. This 
mean-velocity history function generally (and necessarily) is distinguished by a 
‘hump’ whose location is determined by the proximity of the molecule’s release 
position to the nearest conduit boundary. The ‘hump ’ is a more-pronounced feature 
for release positions near a boundary than i t  is for contaminant molecules released 
near the conduit centre, where the ‘hump ’ becomes almost indiscernible. 

The specific case of flow between parallel plates is investigated using a random-walk 
model of the process. A significant difference is found from the results of an analysis 
that excludes the influence of the conduit boundaries on the streamwise contaminant 
distribution a t  times t = O[d4/~U2]i, where U is the mean-flow velocity, K is the 
molecular diffusivity and d is the plate separation distance. 

1. Introduction 
A cloud of scalar contaminant is spread along the streamwise direction of the flow 

within a cylindrical conduit by both the direct contribution of mixing in the 
streamwise direction (diffusion) and the interaction of mixing in the cross-stream 
direction with the gradient of the streamwise velocity (dispersion). Although Taylor 
(1953) has shown that the contaminant cloud takes on a simple asymptotic shape 
(Gaussian with constant growth rate of variance), there are not many practical flows 
to  which this analysis will apply (see Chatwin 1970, 1971; Sullivan 1971b; Dewey & 
Sullivan 1977). 
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Model equations have been proposed to  extend the work of Taylor (see Gill & 
Sankarasubramanian 1970 ; Smith 1981) ; however, the complexity of the contaminant 
dispersion problem at small times, as shown herein, suggests that correspondingly 
complex model equations may be required for an adequate representation (see Smith 
1982). In this paper a direct probabilistic approach to the motion of marked fluid 
molecules (not unlike that of Chatwin 1977) is used to investigate the dispersion of 
a uniform contaminant sheet (normal in the flow direction) in a unidirectional laminar 
flow. 

The small-time dispersion of a contaminant sheet has practical importance when 
one is extracting sample fluid from a flow by means of a small-diameter sampling 
tube, as for example in the use of a flow-through fluorometer (see Sullivan 1971~) .  
Because of the smallness of the sampling-tube diameter (and the fact that the 
monitoring device integrates the sample-fluid property over the sample-tube cross- 
section) variations of concentration over the sample-tube cross-section are ignored. 
Streamwise mixing takes place during the small time interval in which the sample 
fluid passes from the inlet of the sampling tube to the monitoring instrument. The 
degree of resolution of the experimental procedure will depend upon the amount of 
streamwise mixing. For this problem one can, by superposition, replicate the 
dispersion from any one-dimensional contaminant-concentration signal using the 
solution for the dispersion of a thin uniform sheet of contaminant. 

The two separate contributions to the streamwise spreading of a contaminant 
cloud, dispersion and streamwise diffusion, have a relative importance that depends 
on the time elapsed from release. At large time ( k / d 2  %- 1) the contribution of the 
streamwise diffusion is usually insignificant, as was first demonstrated by Taylor 
(1953). Following Taylor (1921) it  is apparent that  at extremely small times and away 
from the influence of the flow boundary the advectivdiffusive interaction is 
unimportant. Lighthill (1966) and Chatwin (1976) considered the problem of a 
contaminant cloud released near the centre of a tube and before a significant amount 
of contaminant has had time to diffuse to the wall ( t K / d 2  4 1). Lighthill neglected 
the direct contribution of K ,  which neglect was determined by Chatwin to be 
appropriate when t K / d 2  & (Ud/K)-j. Smith (1982) has recently shown that, away from 
the conduit walls, the distribution of contaminant is essentially Gaussian a t  very 
small times. It is interesting that,  as shown in Chatwin & Sullivan (1981), when there 
is a non-zero gradient of K (unlike the present case) the contribution a t  small time 
due to the variability of K will always become important before that due to the 
advectivdiffusive interaction. The practical application cited in Lighthill (1966) 
and in Chatwin (1976) of an injection in large arteries may require a variable 
diffusivity when smaller blood vessels, in which the flow is thixotropic, is considered. 

In  this paper special consideration is given to the role of conduit boundaries in the 
streamwise spread of contaminant a t  small times. Even in a simple uniform flow there 
is a ‘piling-up’ of contaminant a t  the boundaries when a random-walk model is used 
(see Csanady 1973 ; Chandrasekhar 1943), and here one expects the zero-velocity 
condition a t  a solid boundary to  have a significant effect on the streamwise 
contaminant distribution before too much time has elapsed. Chatwin (1977) has 
explored the case of the release of a contaminant sheet in a tube, and concludes that 
at extremely short times ( k / d 2  < 0.01) ‘no significant contribution to the variance’ 
comes from the region near the wall. This conclusion is not inconsistent with the 
findings of this paper in that here, in the flow between parallel plates, the effect of 
the wall is seen as a large tail on the distribution, which becomes more pronounced 
as time increases. 
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2. The dispersion of a contaminant sheet 
I n  this section i t  will be shown how the dispersion of a contaminant sheet depends 

critically on the Lagrangian mean-velocity history of a fluid molecule. I n  the 
following section the behaviour of the mean-velocity history in general will be 
investigated, and specific calculations made for the flow between parallel plates. 

The Lagrangian displacement vector X( t  ; X( to ) )  (with component X,(t  ; X ( t o ) )  in the 
streamwise direction) of a fluid molecule a t  time t on the condition of its release a t  
X(to) a t  time to is determined from 

t 

t o  

where v(t; X( to ) )  is the Lagrangian molecule velocity vector (component vl(t; X ( t o ) )  
in the streamwise direction). Following Taylor (1921) the second moment of the 
streamwise displacement is found from 

X&; X( to ) )  = J v&’; X(t0)) dt’, ( 1 )  

where an overbar is used to denote an ensemble average. The velocity component 
v,(t; X( to ) )  depends on the release position X(to) ,  and is non-stationary for small 
time intervals t - to. However, for sufficiently large t - to the displacement 
X , ( t ;  X( t , ) ) -X , ( t ;  X ( t o ) )  will be asymptotically Gaussian and the integral in ( 2 )  will 
become constant, as is discussed in Lumley (1972) .  

The Lagrangian streamwise velocity component can be written as 

vl(t; x ( t O ) )  = u ( X 2 ( t ;  x ( t O ) ) ,  x 3 ( t ;  x ( t O ) ) )  + w;, (3) 

where w; is the random microscopic streamwise velocity fluctuation due to thermal 
molecular activity, and is taken to  be isotropic and uncorrelated with u and 
independent of space or time. u ( x , , x 3 )  is the steady Eulerian streamwise velocity 

(4) 
component of the flow ; 

Replacement of v1 in (2) with (3) and the use of (4) leads to 

- 
w; = 0. 

when t - t o  % t,, the integral timescale of w;. The result ( 5 )  is in essence the same as 
that derived by Saffman (1960) (see also Chatwin 1977), but with a different notation. 

A very important simplification to ( 2 ) ,  and hence to (5 ) ,  results when an event in 
the ensemble is the release of a uniform sheet of marked molecules from a constant 
value of Xl( to) .  I n  flows that are homogeneous in the streamwise direction there will 
be one corresponding path R where (see figure 1 )  

Xz( to)  = a + X,( t ;  a ,  b )  = a’, 

X3(to)  = b + X 3 ( t ;  a ,  b )  = b‘ 

Xz( to)  = a’ + X, ( t ;  a’, b’) = a,  

&(to)  = b‘ + X 3 ( t ;  a‘, b‘) = b 

( 6 6 )  

(7 a )  

( 7 b )  

for every identical reverse path Q ,  where 
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FIGURE 1 .  A definition sketch showing (a )  an end view and ( b )  a cross-sectional side view of 
the conduit. Molecular paths R and Q are discussed in $2. 

in the ensemble of events. As a consequence, the representation of (2) for a sheet 
release, 

where A is the conduit cross-sectional area, has the equivalent representation (by 
interchanging paths like Q with paths like R) as 

I n  the notation of (5), (9) is 

Thus for the special case of the release of sheets of marked molecules the second 
moment is determined by the Lagrangian mean-velocity history 

of mo1ecules.t Equation (9) applies to  both laminar and turbulent flows ; however, 
further progress in turbulen t-flow regimes requires assumptions that are outlined 
in Dewey & Sullivan ( 1 9 7 9 ~ )  . 

The mean-velocity history is determined from 

where p(x,, x3, t -  t o ;  X ( t o ) )  dx, dx3 is the probability that a molecule released a t  
location X ( t o )  at time to will be within x2 and x2 + dx, and also x3 and x3 + dx3 a t  time 

-i A similar result to (10) can be derived for some time-dependent flows, and will be presented 
in a forthcoming paper. 
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t .  The probability density function p is found from the solution of (see e.g. Chatwin 
1977) 

with ap/an = 0 in the conduit boundary and 

such that 
P(% x390, X ( 0 ) )  = & ? 2 - X 2 ( 0 ) )  8(x,-X3(0))  

t-oo A 
1 

l imp = -, 

The solution to (12) can be written as an eigenvalue A,, eigenfunction Fn(x2, x 3 ;  X(0)) 
expansion (see e,g. the discussion in Aris 1956) : 

(13) 
1 ” o  

p ( x 2 , x 3 , t ’ ; X ( O ) )  =A+ I: e-h”t ‘Fn(22,x3;X(0) ) ,  
n-1 

1 where for t’ + 1 
p - -j+ e-4t’F1(x2, x 3 ; X ( 0 ) ) .  

Using (14) in (1 1) leads to 

where 
a - U+ $(X(O)) ePA1 t ‘ ,  (15) 

$(x(o)) = JJ u(x2> 4 ( x 2 9  x 3 ;  x(o)) d x 2  dz3*  (16) 
A 

Equation (15) suggests that the mean-velocity history approaches the flow-discharge 
velocity U in a regular exponential manner for large t - to.  When (15) is used in (10) 
there results - U2t’ + ~( 1 - ePhlt’)  + K ,  (17) 

1 aX2 
2 at 
-- 

where the constant @ is given by 

It readily follows from (1 1 )  and (12) that for a sheet release the average displacement 

is 

so that (17) can be written in terms of the variance as 

w; XI@,))  = U(t- t , ) ,  (19) 

l a  
2 at 
-- ( X - X ) 2  - $(I -e -h l t ’ ) ,  

when the normally very small contribution due to the molecular diffusivity K has been 
disregarded. The form of (20) is just that  found for a tube by Chatwin (1977), for 
a rectangular conduit by Chatwin & Sullivan (1982), and for the flow between parallel 
plates by Dewey & Sullivan (19794. I n  fact, to a good approximation, the form given 
in (20) was measured in a turbulent open-channel flow and discussed in Sullivan 
(197 1 b).  
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3. The mean-velocity history at small time 
The simple monotonic approach of the mean-velocity history to the discharge 

velocity at large times shown in (15) cannot in general describe the small-time 
behaviour ofa fluid molecule. Consider release positions (xi, XI) on the flow cross-section 

u(x;,x;)  = u. (21 ) 
defined by 

The mean-velocity history of such molecules begins and ends as the discharge velocity 
U .  However, the ensemble-average displacement, X,(t ; X ( t o ) )  and X,( t ;  X(to)) of these 
molecules begins at x; and x; and asymptotically approaches the centre of area of 
the cross-section, thereby resulting in interim values of the mean-velocity history that 
are different from the discharge velocity. It is to be noted that X, ( t ;X( t , ) )  and 
X 3 ( t ; X ( t O ) )  do not change from the initial value at to until molecules encounter the 
nearest solid boundary. It is only through the encounter of molecules with the solid 
boundary that the 'humps' on u(X , ( t ;  X ( t o ) ) ,  X,( t ;  X(1,))) appear. The resulting 
'hump ' in the mean-velocity history is a quite general phenomenon and will occur 
in all flows, both laminar and turbulent, for which the location of the discharge 
velocity (as determined in (21)) is not coincident with the centre of area of the flow 
cross-section. It is only in flows like Couette flow when the position (xi,%;) is 
coincident with the centre of area (mid-distance between the plates) that a simple 
monotonic approach of the mean-velocity history to the discharge velocity will occur 
for release positions near (xi, x;). 

As a specific example consider the laminar flow between parallel plates. The 
mean-velocity profile 

u(y) = BU(%-($)') 

over the flow depth 0 < y < d results in the mean-velocity history, for molecules 
released a t  position Y(0) a t  t = 0, 

u(Y( t ) ;  Y(0) )  = U-- 6 U "  X -exp 1 ( -(?),~t) cos (7 Y(O)), (23) 
77' 12-ln2 

1 *  
p(y,t;  y(0)) = 2 c exp( -(?),~t) exp ( y i g )  cos (7 Y(0))  (25) 

n--w 

have been used in (11) and (12) (see Dewey & Sullivan 1 9 7 9 ~ ) .  
The form of the small-time behaviour of the Lagrangian mean-velocity history 

u( Y(t)  ; Y(0))  is not directly apparent from (23) ; however, it  can readily be observed 
that? 

Q7 = Q,,, 

with Q(T ,  0) = Q,(T,&) = 0, is satisfied by Q ( t ;  Y(0)) = [a( Y ( t ) ;  Y(0))-  Eq/U, 
7 = tK/d2 and 6 = Y(O)/d.  The solution to (26) is 

t This is indeed a very general result and (as pointed out by a referee) can be seen t o  result 
directly in, upon multiplication of 12(a) by u(zz, x3) and integration over the cross-section, 
it, = 6U(p(0,7;  Y ( o ) ) + p ( l , ~ ;  Y ( O ) ) ) - l 2 U  for this specific parallel-plate case. 
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where 9-l denotes the inverse Laplace transform. As S +oo (that is 7 + 0) 

When 7 + 0, 6 + 0 and 5 + 1, it  is clear from (29) that 52(7,[)  is everywhere 
decreasing. Of course Cl(7,E) cannot decrease everywhere, since this would lead to a 
decelerating flow. There is an increasingly thick layer, comprising release positions 
starting a t  = 0, 7 = 0, for which the second term on the right-hand side of (29) is 
greater than 12. Molecules that started in this layer have increasing values Of n(7, t;) 
and balance all of the remaining release positions a t  larger values of 6 where n(7,f) 
is decreasing. This Lagrangian view of the mean velocity of fluid molecules is quite 
different from that observed when one looks a t  an array of hydrogen bubbles, for 
example, when the bubbles simply follow the Eulerian velocity profile. 

As a result of the above, molecules released from positions with a mean velocity 
in excess of the discharge velocity U can have a mean-velocity history that diminishes 
below the value of U before ultimately returning to it. Also, molecules released from 
positions with a mean velocity below U can initially attain Lagrangian-mean 
velocities that are further removed from U before ultimately returning to U. This 
phenomenon is seen clearly on figures 2 (u-c). 

The location of the ‘hump ’ in the Lagrangian-mean-velocity-history curves can 
be found from a consideration of release positions near E = 0, where from (29) 

results in 
f 2  = -47 In (2(n7)4). 

Figure 3 shows the typical value of Q(7,0.16), with a straight line of slope - 12 
accurately describing the r + 0 behaviour. This initial behaviour is found to be 
accurately true for all of the release positions Y(0)  shown on figures 2 (a-c). The modal 
values of n(7,E) shown as open circles on figures 2 (a+) are transferred to figure 4, 
where they are shown to be in good agreement with the values given by (31). 

For all release positions, excluding E = 0 and f = 1, there is an initial linear decrease 
in the mean-velocity history (i.e. Q(7, E )  = - 127+R(O, 6 ) ) .  The transition between 
this initial linear behaviour and the exponential decay to the discharge velocity at 
large times of (15) is marked by a ‘hump’ in the mean-velocity-history record that 
is located by (31) for release positions near the wall. It would appear from figures 
2 (a-c) and figure 4 that ‘humps’ in the mean-velocity history for release positions 
f < 6 < are not discernible, and may occur a t  larger times than those for which the 
asymptotic expansion (29) remains valid. 

4. The wall effect on dispersion at small times 
In  this section the direct contribution to the streamwise dispersion process at small 

times from the presence of a solid boundary will be assessed both with regard to when 
and how i t  affects the form of the cross-sectionally integrated contaminant 
concentration curve E(x ,  t ) .  

A direct and simple approach that has met with considerable success elsewhere (see 
Bugliarello & Jackson 1964; Dewey & Sullivan 1979a, b ;  Chatwin & Sullivan 1982) 
is to use a random-walk model of a molecule’s motion on the flow cross-secti0n.t Here 
the actual process is simulated by matching the value of 2~ to the product of a 

t Also referred to in a more general context as a Monte Carlo method. 
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FIGURE 2 (a ,  h ) .  For caption see facing page. 
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FIGURE 2. n(7, Y(0) )  versus t K / d 2 :  -, equation (23); 0, modal value. 
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tz  

FIQURE 4. 7 versus Ez: -, equation (31); 0, modal values from figure 2 (equation (23)) 

macroscopic lengthscale L that  is considerably larger than the integral lengthscale 
of the fluctuating microscopic molecular motion and a velocity scale V .  This 
simulation procedure is explained in appendix A and has the capability of providing 
quantitative results that  would be virtually impossible to obtain from a physical 
experiment. For example, simulation values were found to  concur with the values 
presented in figures 2 (a-c). 

An ideal comparator with which to  assess the wall effect is available from Chatwin 
(1976). There the small-time growth of a contaminant cloud near the centre of a 
conduit was investigated and a procedure outlined to  find c(x, t )  that  purposefully 
excluded any contribution from the solid conduit boundary. Following Chatwin 
(1976) a small-time asymptotic solution to the convective-diffusion equation for an 
initial contaminant sheet is integrated over the cross-section to provide c(x, T ) ,  where 
x = x/ZPd, which depends on the PBclet number P = d U / 2 ~ .  Details of this solution 
are given in appendix B, and points calculated from the solution (shown as open 
circles) on figures 5(a-e) indicate a skewed distribution for C(X,T)  with a large 
upstream tail. 

Two further comparators are of use here. One is the mean-concentration curve in 
the case of K = 0, which is 

C(X,T)  = [6P~(I-:)al-' ,  

and is shown (in part) as a solid line on figures 5(a-c) that has x = &- as asymptote. 
That is the location of a molecule travelling with the constant maximum flow 
centreline velocity. Concentration values can only occur downstream of this position 
by the agency of molecular diffusion. A second useful comparator is the mean 
concentration found using the simulation when molecular diffusion in the streamwise 
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direction is neglected. This second comparator shows the distribution C(x, T )  that 
results exclusively from the advective-diffusive interaction, and is shown as a series 
of dots on figures 5 (a-c). It is clear in these figures that a t  very small times the form 
of 6 is completely determined by direct diffusive effects, since the dots follow (32), 
and that dispersion makes no contribution. It is also clear (and is particularly evident 
in figure 5 c )  that at larger times the advectivc-diffusive process dominates by the 
fact that the dots provide the same curves as the complete simulation. This behaviour 
is anticipated as T > Pi, and indeed the largest value of T shown in figure 5 ( c )  is 
approximately equal to Pi. Generally, over the range of T and P shown on these 
figures, both the dispersion and diffusion effects are important. 

A comparison of the Chatwin calculation (open circles) with the full simulation 
(crosses) on figures 5(u-c) shows that at small enough times streamwise diffusion is 
the dominant contribution because there is little difference between the two curves. 
That is, the presence of the wall has virtually no impact, and this is consistent with 
the findings of Chatwin (1977). However, a t  larger times and while both diffusion and 
dispersion are important mechanisms, a very pronounced and increasing extension 
to the upstream tail of the Chatwin calculation is evident in the simulation data. This 
difference is the direct result of the solid boundary that is present in the simulation 
and excluded from the Chatwin calculation. The integral of Cmust equal unity, and 
thus this large tail causes a considerable distortion to upstream values of 6, which 
otherwise (for example if all values of 6 were normalized with the maximum value) 
would appear to be in quite reasonable agreement at downstream locations throughout 
figures 5 (u-c) . 

A good agreement between simulated values and values calculated with Chatwin’s 
procedure a t  downstream locations (x - &) is anticipated, since there 6 describes 
contaminant that has not yet had time to reach the conduit boundaries (T << 1) .  In  
application, however, unless one can be sure that a contaminant cloud is not initially 
spread over an appreciable fraction of the flow cross-section, it is clear that the 
interaction of the contaminant cloud with the conduit boundary is very important 
even at quite small times (7 - H). 

This work received financial support from the National Sciences and Engineering 
Research Council of Canada, and the authors wish to express their gratitude to 
S. Deakin for useful discussion on the asymptotic expansion used in 53. 

Appendix A. The simulation 
The motion of fluid molecules is followed as these traverse the flow cross-section 

in discrete steps of length f L with speed V and for a time At = L /  V.  The values 
of L and V are chosen to satisfy K = &LV. The direction of each step is determined 
with a random-number-generating routine on a digital computer. Each step results 

(33) 
in displacements 

Yi+ l  = yi f L, 

where u ( y )  is the mean Eulerian velocity profile. The random sense of direction (e.g. 
f L )  in (34) is independent of that in (33). When a wall is encountered the molecule 
is reflected. Variables are non-dimensionalized as 

L , X K  U(Y) , Vd tK I Y  x =- d2U’ u ‘ (y )  =u, v =-, t ‘=-  = d ’  L’=- d’  K d2 ‘ 
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., simulation without K in X-direction; -, equation (32). 

By choosing L' = l / n  then V' = 2n and At' = L'/V' = (2n2)-l. Thus during a time 
interval At' a molecule undergoes non-dimensional displacements 

= y; f n-', (35) 

= xi + (2n)-l u' (y ' )  dy' k (2nP)-', 

where the PBclet number P = d U / 2 ~  occurs explicitly only when the direct contri- 
bution of K to longitudinal dispersion is taken into account. This is confirmed 
from a consideration of the convective-diffusion equation for the above non- 
dimensionalization, which is 

(37) 

The programme is run for a specified number of time steps At', and the resultant 
displacements of generally 10000 molecules, which were uniformly spread on 
0 Q y' Q 1 a t  t = 0, are accumulated. 

1 
P2 

c,. +i( 1 - d2 y'2) Cx, = - cxrxr + c,.,.. 

Appendix B. An asymptotic solution 
Following Chatwin (1976) a solution to 
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with G(x, y, 0) = 6(x) 6(y-yo), of the form 
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A 
F 

C=-exp(-(X2+Y2))  (39) 

is sought, where 

and u(y) is the Eulerian mean-velocity profile.? With the appropriate change of 
variable in (38) and expansion of u(y) about yo in a Taylor series (39) is substituted 
in (38) and terms with the same exponent n of T are equated to solve for V n ) ( X ,  Y). 
The first five are found to be 

r(1) = 0, r(2) = - ~ P Y X Y ,  r(3) = - P X ( ~ P + ~ ) ,  (40a, b ,  c )  

r(4) = P Z ~ [ Y ~ ( ~ X - - ~ ) + ~ X - ~ I ,  (40 d) 

P5) = P"[yCX2 y3 + EX2 + # X z  Y2 -#<Y- gCY3 + ~ C X Z  Y+ Y z  +&I, (40 e )  

where 6 = yo/a and P = Ua/K. Defining 

then from (39)-(41) 

C(X,T,C) = -exp (-Xz) [1-$PXT3+(~X-~)P~P+(#$Xz+~)P2T5]. (42) 

Equation (42) is now integrated over all possible release positions yo on the cross-section 
to form 

Alrf 
T 

c(x, r )  = B7-f exp [ - ($Pr$($x/r - 1 + p)) ']  {(l- 12P"p f 

where B is a constant determined so that 

x = x/2Pd and r = tK/d2. Equation (43) is now evaluated for specific values of 6, P 
and r using Newton4otes sixth-order procedure (see Froberg 1969, p. 206). 
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